ARTICLE

Volume 3,Issue 1

Fall 2025

Cite this article
22
Citations
41
Views
20 January 2025

感染严重急性呼吸综合征冠状病毒2对女性生殖系统的影响:研究进展

诗凯 苟1 瑞 袁1
Show Less
1 重庆医科大学附属第一医院, 中国
MRP 2025 , 3(1), 35–38; https://doi.org/10.61369/MRP.12554
© 2025 by the Author. Licensee Art and Design, USA. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

严重呼吸综合征冠状病毒病2(SARS-CoV-2)是一种主要经呼吸系统传播的病毒。除了呼吸系统外,该病毒还会对其他器官和系统造成伤害,如神经系统、消化系统、生殖系统。有大量报道表明女性在感染期间发生月经紊乱,因此感染SARS-CoV-2对女性生殖系统的影响应得到更多关注。本文将系统描述SARS-CoV-2感染与女性卵巢及生殖系统的相关研究进展,同时评估其对孕产结局和辅助生殖技术 (ART) 的潜在影响。有证据表明,SARS-CoV-2通常不会直接感染女性生殖系统,但可能通过细胞因子风暴(Cytokine release syndrome)引发的炎症反应及神经系统损伤间接影响性激素水平。感染SARS-CoV-2的女性出现的月经紊乱可能与血管紧张素转化酶2(ACE2)表达下调、激素水平异常、药物治疗及心理应激相关。感染SARS-CoV-2可能会带来产科问题,但ART结局未发现改变。

Keywords
严重呼吸综合征冠状病毒病2
女性生殖系统
References

[1] Zhou, F., et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020. 395(10229): p. 1054-1062.
[2] Xu, T., et al., Epidemiological and clinical features of asymptomatic patients with SARS-CoV-2 infection. J Med Virol, 2020. 92(10): p. 1884-1889.
[3] Guan, W.J., et al., Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 2020. 382(18): p. 1708-1720.
[4] Ashktorab, H., et al., COVID-19 in Latin America: Symptoms, Morbidities, and Gastrointestinal Manifestations. Gastroenterology, 2021. 160(3): p. 938-940.
[5] Diao, B., et al., Human kidney is a target for novel severe acute respiratory syndrome coronavirus 2 infection. Nat Commun, 2021. 12(1): p. 2506.
[6] Jackson, C.B., et al., Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 2022. 23(1): p. 3-20.
[7] Wang, Z. and X. Xu, scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells, 2020. 9(4).
[8] Wu, M., et al., Co-expression of the SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in human ovaries: Identification of cell types and trends with age. Genomics, 2021. 113(6): p. 3449-3460.
[9] Kurmanova, A.M., G.M. Kurmanova, and V.N. Lokshin, Reproductive dysfunctions in viral hepatitis. Gynecol Endocrinol, 2016. 32(sup2): p. 37-40.
[10] Schoenbaum, E.E., et al., HIV infection, drug use, and onset of natural menopause. Clin Infect Dis, 2005. 41(10): p. 1517-24.
[11] Li, K., et al., Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age. Reprod Biomed Online, 2021. 42(1): p. 260-267.
[12] Ding, T., et al., Analysis of Ovarian Injury Associated With COVID-19 Disease in Reproductive-Aged Women in Wuhan, China: An Observational Study. Front Med
(Lausanne), 2021. 8: p. 635255.
[13] Ahmed, A., et al., Localization of the angiotensin II and its receptor subtype expression in human endometrium and identification of a novel high-affinity angiotensin II
binding site. J Clin Invest, 1995. 96(2): p. 848-57.
[14] Donoghue, M., et al., A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 2000. 87(5): p. E1-9.
[15] Oliveira, M.A., et al., Synergistic effect of angiotensin-(1-7) on bradykinin arteriolar dilation in vivo. Peptides, 1999. 20(10): p. 1195-201.
[16] Abassi, Z., et al., ACE2, COVID-19 Infection, Inflammation, and Coagulopathy: Missing Pieces in the Puzzle. Front Physiol, 2020. 11: p. 574753.
[17] Memtsoudis, S.G., et al., Obesity as a risk factor for poor outcome in COVID-19-induced lung injury: the potential role of undiagnosed obstructive sleep apnoea. Br J
Anaesth, 2020. 125(2): p. e262-e263.
[18] Lebar, V., et al., The Effect of COVID-19 on the Menstrual Cycle: A Systematic Review. J Clin Med, 2022. 11(13).
[19] Warner, P., et al., Low dose dexamethasone as treatment for women with heavy menstrual bleeding: A response-adaptive randomised placebo-controlled dose-finding
parallel group trial (DexFEM). EBioMedicine, 2021. 69: p. 103434.
[20] Bofill Rodriguez, M., A. Lethaby, and C. Farquhar, Non-steroidal anti-inflammatory drugs for heavy menstrual bleeding. Cochrane Database Syst Rev, 2019. 9(9): p.
Cd000400.
[21] Ozimek, N., et al., Impact of Stress on Menstrual Cyclicity During the Coronavirus Disease 2019 Pandemic: A Survey Study. J Womens Health (Larchmt), 2022. 31(1): p.
84-90.
[22] Khan, S.M., et al., SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study. Am J Obstet Gynecol,
2022. 226(2): p. 270-273.
[23] Herrero, Y., et al., SARS-CoV-2 infection negatively affects ovarian function in ART patients. Biochim Biophys Acta Mol Basis Dis, 2022. 1868(1): p. 166295.
[24] Yao, X.H., et al., A cohort autopsy study defines COVID-19 systemic pathogenesis. Cell Res, 2021. 31(8): p. 836-846.
[25] Madendag, I.C., Y. Madendag, and A.T. Ozdemir, COVID-19 disease does not cause ovarian injury in women of reproductive age: an observational before-and-after
COVID-19 study. Reprod Biomed Online, 2022. 45(1): p. 153-158.
[26] Jing, Y., et al., Potential influence of COVID-19/ACE2 on the female reproductive system. Mol Hum Reprod, 2020. 26(6): p. 367-373.
[27] Wilkins, J. and S. Al-Inizi, Premature ovarian insufficiency secondary to COVID-19 infection: An original case report. Int J Gynaecol Obstet, 2021. 154(1): p. 179-180.
[28] Balcı, S., et al., Effect of low and high dose of favipiravir on ovarian and reproductive function in female rats: Biochemical and histopathological evaluation. Gen Physiol
Biophys, 2022. 41(5): p. 457-463.
[29] Chadchan, S.B., et al., The SARS-CoV-2 receptor, angiotensin-converting enzyme 2, is required for human endometrial stromal cell decidualization†. Biol Reprod, 2021.
104(2): p. 336-343.
[30] Hur, C., et al., Uterine Factor Infertility: A Clinical Review. Clin Obstet Gynecol, 2019. 62(2): p. 257-270.
[31] Saadedine, M., et al., The influence of COVID-19 infection-associated immune response on the female reproductive system†. Biol Reprod, 2023. 108(2): p. 172-182.
[32] Biswas Shivhare, S., et al., Menstrual cycle distribution of uterine natural killer cells is altered in heavy menstrual bleeding. J Reprod Immunol, 2015. 112: p. 88-94.
[33] Cui, P., et al., Severe acute respiratory syndrome coronavirus 2 detection in the female lower genital tract. Am J Obstet Gynecol, 2020. 223(1): p. 131-134.
[34] Aslan, M.M., et al., SARS-CoV-2 is not present in the vaginal fluid of pregnant women with COVID-19. J Matern Fetal Neonatal Med, 2022. 35(15): p. 2876-2878.
[35] Takmaz, O., et al., Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is not detected in the vagina: A prospective study. PLoS One, 2021. 16(9): p.
e0253072.
[36] Qiu, L., et al., SARS-CoV-2 Is Not Detectable in the Vaginal Fluid of Women With Severe COVID-19 Infection. Clin Infect Dis, 2020. 71(15): p. 813-817.
[37] Khoiwal, K., et al., Identification of SARS-CoV-2 in the vaginal fluid and cervical exfoliated cells of women with active COVID-19 infection: A pilot study. Int J Gynaecol
Obstet, 2021. 153(3): p. 551-553.
[38] Orvieto, R., A. Segev-Zahav, and A. Aizer, Does COVID-19 infection influence patients’ performance during IVF-ET cycle?: an observational study. Gynecol
Endocrinol, 2021. 37(10): p. 895-897.
[39] Wang, M., et al., Investigating the impact of asymptomatic or mild SARS-CoV-2 infection on female fertility and in vitro fertilization outcomes: A retrospective cohort
study. EClinicalMedicine, 2021. 38: p. 101013.
[40] Prasad, S., et al., Impact of stress on oocyte quality and reproductive outcome. J Biomed Sci, 2016. 23: p. 36.
[42] Chi, J., W. Gong, and Q. Gao, Clinical characteristics and outcomes of pregnant women with COVID-19 and the risk of vertical transmission: a systematic review. Arch
Gynecol Obstet, 2021. 303(2): p. 337-345.
[42] Ryan, G.A., et al., Clinical update on COVID-19 in pregnancy: A review article. J Obstet Gynaecol Res, 2020. 46(8): p. 1235-1245.
[43] Elsaddig, M. and A. Khalil, Effects of the COVID pandemic on pregnancy outcomes. Best Pract Res Clin Obstet Gynaecol, 2021. 73: p. 125-136.
[44] Moore, K.M. and M.S. Suthar, Comprehensive analysis of COVID-19 during pregnancy. Biochem Biophys Res Commun, 2021. 538: p. 180-186.
[45] Kumar, R., et al., SARS-CoV-2 infection during pregnancy and pregnancy-related conditions: Concerns, challenges, management and mitigation strategies-a narrative
review. J Infect Public Health, 2021. 14(7): p. 863-875.
[46] Evans, O.B. and P.W. Stacpoole, Prolonged hypolactatemia and increased total pyruvate dehydrogenase activity by dichloroacetate. Biochem Pharmacol, 1982. 31(7): p.
1295-300.

Share
Back to top