Volume 2,Issue 9
Fall 2024
薛定谔方程的虚拟元分析
本文旨在研究基于虚拟元方法的非线性Schrödinger方程(NLSW)的数值求解,该方程包含波动算子.首先,利用误差分裂技术将时空误差分解为时间误差和空间误差.其次,使用截断函数方法处理非线性项.误差分裂技术和截断函数方法在时间上采用隐式Crank-Nicolson方法,在空间上采用新的隐式虚拟元方法.最终,我们得到了NLSW方程的L2误差估计。
[1] D.Mora, G.Rivera, R.Rodríguez: A Virtual Element Method for the Steklov EigenvalueProblem. Mathematical Models and Methods in Applied Sciences, 25(2015)1421-1445.
[2] G.Vacca, L.Beirão da Veiga: Virtual Element Methods for Parabolic Problems on Polyg-onal Meshes. Numerical Methods for Partial Differential Equations, 31(2017)2110-2134.
[3] Hu, Y.Chen, A conservative difference scheme for two-dimensional nonlinear Schröding-er equation with wave operator, Number. Methods Partial Differ. Equ. 32(3)(2015)862-876.
[4] Y.Yang, H.Li, X.Guo, A linearized energy-conservative scheme for two-dimensional no-nlinear Schrödinger equation with wave operator, Appl. Math. Comput. 404(2021)126-234.
[5] Meng Li: Cut-Off Error Splitting Technique for Conservative Nonconforming VEM forN-Coupled Nonlinear Schrödinger-Boussinesq Equations Journal of Scientific Computing,(2022)93:86.