Volume 2,Issue 12
Fall 2024
慢性疼痛合并认知异常的研究进展
慢性疼痛(CP)是一种持续超过正常愈合时间的疼痛综合征,其与认知异常的共病现象严重损害患者生活质量及社会功能。研究表明,约半数慢性疼痛患者伴随注意力下降、记忆减退等认知障碍,其机制涉及大脑结构重塑(如前额叶皮质、海马灰质萎缩)、神经炎症(促炎因子如IL-6、TNF-α介导突触损伤)及神经递质失衡(GABA能抑制减弱、LC-NE系统功能障碍)。评估方法包括主观量表(如MoCA)、生物标志物(炎症因子水平)和神经影像技术(fMRI、脑电图),但客观定量指标仍待开发。因此,本文旨在总结慢性疼痛合并认知障碍的最新进展,为相关研究者以及临床医师提供系统认识,也为未来研究应聚焦神经环路机制与生物标志物开发提供思路,为临床诊疗提供精准依据。
[1]Scholz J, Finnerup Nanna B , Attal N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain[J]. Pain, 2019, 160(1):53-59.
[2]Yongjun Z, Tingjie Z, Xiaoqiu Y, et al. A survey of chronic pain in China[J]. Libyan Journal of Medicine, 2020, 15(1).
[3]温志娟,王德强,屈明芬,等. 慢性疼痛认知障碍的研究进展[J].中国疼痛医学杂志, 2015, 21(5):374-376.
[4]Corti E J, Gasson N, Loftus A M. Cognitive profile and mild cognitive impairment in people with chronic lower back pain[J]. Brain and cognition, 2021, 151: 105737.
[5]Rouch I, Edjolo A, Laurent B, et al. Association between chronic pain and long-term cognitive decline in a population-based cohort of elderly participants[J]. Pain, 2021, 162(2): 552-560.
[6]Kazim M A, Strahl A, Moritz S, et al. Chronic pain in osteoarthritis of the hip is associated with selective cognitive impairment[J]. Archives of Orthopaedic and Trauma Surgery, 2023, 143(4): 2189-2197.
[7]Malfliet A, Coppieters I, Van Wilgen P, et al. Brain changes associated with cognitive and emotional factors in chronic pain: a systematic review[J]. European Journal of Pain, 2017, 21(5): 769-786.
[8]Fritz H C, McAuley J H, Wittfeld K, et al. Chronic back pain is associated with decreased prefrontal and anterior insular gray matter: results from a population-based cohort study[J]. The Journal of Pain, 2016, 17(1): 111-118.
[9]Journée S H, Mathis V P, Fillinger C, et al. Janus effect of the anterior cingulate cortex: Pain and emotion[J]. Neuroscience & Biobehavioral Reviews, 2023, 153: 105362.
[10]Luerding R, Weigand T, Bogdahn U, et al. Working memory performance is correlated with local brain morphology in the medial frontal and anterior cingulate cortex in fibromyalgia patients: structural correlates of pain–cognition interaction[J]. Brain, 2008, 131(12): 3222-3231.
[11]Mutso A A, Radzicki D, Baliki M N, et al. Abnormalities in hippocampal functioning with persistent pain[J]. Journal of Neuroscience, 2012, 32(17): 5747-5756.
[12]Noorani A, Hung P S P, Zhang J Y, et al. Pain relief reverses hippocampal abnormalities in trigeminal neuralgia[J]. The Journal of Pain, 2022, 23(1): 141-155.
[13]Ji R R, Nackley A, Huh Y, et al. Neuroinflammation and central sensitization in chronic and widespread pain[J]. Anesthesiology, 2018, 129(2): 343-366.
[14]Rivest S. Regulation of innate immune responses in the brain[J]. Nature Reviews Immunology, 2009, 9(6): 429-439.
[15]Cao S, Fisher D W, Yu T, et al. The link between chronic pain and Alzheimer’s disease[J]. Journal of neuroinflammation, 2019, 16(1): 1-11.
[16]Vergne-Salle P, Bertin P. Chronic pain and neuroinflammation[J]. Joint Bone Spine, 2021, 88(6): 105222.
[17]Zhang W, Xiong B R, Zhang L Q, et al. The role of the GABAergic system in diseases of the central nervous system[J]. Neuroscience, 2021, 470: 88-99.
[18]Medeiros P, de Freitas R L, Boccella S, et al. Characterization of the sensory, affective, cognitive, biochemical, and neuronal alterations in a modified chronic constriction injury model of neuropathic pain in mice[J]. Journal of Neuroscience Research, 2020, 98(2): 338-352.
[19]Cai X, Qiu L, Wang C, et al. Hippocampal inhibitory synapsis deficits induced by α5-containing GABAA receptors mediate chronic neuropathic pain–related cognitive impairment[J]. Molecular neurobiology, 2022, 59(10): 6049-6061.
[20]Chen H Y, Parent J H, Ciampa C J, et al. Interactive effects of locus coeruleus structure and catecholamine synthesis capacity on cognitive function[J]. Frontiers in aging neuroscience, 2023, 15: 1236335.
[21]Deichsel C, Suárez-Pereira I, Llorca-Torralba M, et al. locus coeruleus-noradrenergic projections contribute to hippocampal-dependent memory deficits in a mouse model of chronic neuropathic pain [J]. IBRO Neuroscience Reports, 2023, 15: S551.
[22]Šimić G, Leko M B, Wray S, et al. Monoaminergic neuropathology in Alzheimer’s disease[J]. Progress in neurobiology, 2017, 151: 101-138.
[23]Breivik H, Borchgrevink P C, Allen S M, et al. Assessment of pain[J]. British journal of anaesthesia, 2008, 101(1): 17-24.
[24]Levis B, Benedetti A, Thombs B D. Accuracy of Patient Health Questionnaire-9 (PHQ-9) for screening to detect major depression: individual participant data meta-analysis[J]. bmj, 2019, 365.
[25]Dunstan D A, Scott N. Norms for Zung’s self-rating anxiety scale[J]. BMC psychiatry, 2020, 20(1): 1-8.
[26]Nasreddine Z S, Phillips N A, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. Journal of the
American Geriatrics Society, 2005, 53(4): 695-699.
[27]Cardoso J, Apagueno B, Lysne P, et al. Pain and the montreal cognitive assessment (MoCA) in aging[J]. Pain Medicine, 2021, 22(8): 1776-1783.
[28]Cravello L, Di Santo S, Varrassi G, et al. Chronic pain in the elderly with cognitive decline: a narrative review[J]. Pain and therapy, 2019, 8: 53-65.
[29]Zipp F, Bittner S, Schafer D P. Cytokines as emerging regulators of central nervous system synapses[J]. Immunity, 2023, 56(5): 914-925.
[30]Gevers-Montoro C, Puente-Tobares M, Monréal A, et al. Urinary TNF-α as a potential biomarker for chronic primary low back pain[J]. Frontiers in integrative
neuroscience, 2023, 17: 1207666.
[31]Liu C, Chu D, Kalantar ‐Zadeh K, et al. Cytokines: from clinical significance to quantification[J]. Advanced Science, 2021, 8(15): 2004433.
[32]Chiang A C, Massagué J. Molecular basis of metastasis[J]. New England Journal of Medicine, 2008, 359(26): 2814-2823.
[33]Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression[J]. Biological psychiatry, 2010, 67(5): 446-457.
[34]McInnes I B, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis[J]. Nature Reviews Immunology, 2007, 7(6): 429-442.
[35]Zhao W, Zhao L, Chang X, et al. Elevated dementia risk, cognitive decline, and hippocampal atrophy in multisite chronic pain[J]. Proceedings of the National Academy of
Sciences, 2023, 120(9): e2215192120.
[36]Gao Y, Tian S, Tang Y, et al. Investigating the spontaneous brain activities of patients with subjective cognitive decline and mild cognitive impairment: an amplitude of
low-frequency fluctuation functional magnetic resonance imaging study[J]. Quantitative Imaging in Medicine and Surgery, 2023, 13(12): 8557.
[37]Ta Dinh S, Nickel MM, Tiemann L, et al. Brain dysfunction in chronic pain patients assessed by resting-state electroencephalography[J]. Pain, 2019, 160(12):2751-2765.
[38]Zebhauser PT, Hohn VD, Ploner M. Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review[J]. Pain,
2023, 164(6):1200-1221.
[39]Jackson CE, Snyder PJ. Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer's disease[J]. Alzheimers
Dement, 2008, 4(1 Suppl 1):S137-143.
[40] 李梓浩, 吴美妮, 尹昌浩, 等. 脑电图在轻度认知功能障碍中的研究进展[J].临床荟萃,2022,37(8):748-752.
[41]Mitsukura Y, Sumali B, Watanabe H, et al. Frontotemporal EEG as potential biomarker for early MCI: a case–control study[J]. BMC psychiatry, 2022, 22(1): 1-6.
[42]Mitsukura Y, Tazawa Y, Nakamura R, et al. Characteristics of single-channel electroencephalogram in depression during conversation with noise reduction technology[J].
PloS one, 2022, 17(4): e0266518.
[43]Lee TW, Tramontano G. Regional spectral ratios as potential neural markers to identify mild cognitive impairment related to Alzheimer's disease[J]. Acta Neuropsychiatr,
2023, 35(2):118-122.
[44]Mussigmann T, Bardel B, Lefaucheur J P. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review[J]. NeuroImage,
2022, 258: 119351.