Volume 2,Issue 9
Fall 2024
非啮齿类骨肉瘤动物模型的构建及AI在其的应用
骨肉瘤作为骨骼系统恶性程度最高的肿瘤之一,其临床治疗仍以手术联合化疗为主,但转移性患者的生存率长期未见突破。传统啮齿类模型虽广泛用于基础研究,但在模拟人类肿瘤微环境、转移机制及药物代谢等方面存在显著局限性。本文聚焦于鸡胚绒毛尿囊膜(CAM)、猪及犬等非啮齿类模型的转化潜力,并探讨人工智能(AI)技术在优化模型构建、数据分析及治疗开发中的协同作用。通过整合多组学数据、AI驱动的影像分析及智能药物筛选,这些模型为解析疾病分子机制及加速新疗法开发提供了多维平台,具有重要的临床转化价值。
[1]Moukengue B, Lallier M, Marchandet L, Baud'huin M, Verrecchia F, Ory B, Lamoureux F. 骨肉瘤的起源和治疗.癌症(巴塞尔).2022 年 7 月 19 日;14(14):3503.doi:10.3390/cancers14143503。PMID:35884563;PMCID:PMC9322921.
[2]费菲,曲莉莉.牛晓辉:肢体经典型骨肉瘤循证临床诊疗指南 中国医师协会骨科医师分会《骨肿瘤循证临床诊疗指南》编委会成员权威解读[J].中国医药科学,2015,5(12):1-3.
[3]侯立刚,杨建义,马云山.基于监测、流行病学和最终结果数据库的骨肉瘤临床预测模型的构建[J].中华实验外科杂志,2021,38(12):2518-2522.
[4]曹亮,张寿,邓建超,等.骨肉瘤化疗现状及新进展[J].海南医学,2015,26(16):2407-2409.
[5] 喻帅克, 罗茂丽, 王连睿, 等. 基于数据挖掘的骨肉瘤动物模型应用分析[J].中国比较医学杂志,2023,33(11):55-62.
[6]Zhang, YJ, Luo, Z, Sun, Y, et al. From beasts to bytes: Revolutionizing zoological research with artificial intelligence. ZOOL RES. 2023; 44 (6): 1115-1131. doi: 10.24272/
j.issn.2095-8137.2023.263.
[7]Moreno-Jiménez, I, Hulsart-Billstrom, G, Lanham, SA, et al. The chorioallantoic membrane (CAM) assay for the study of human bone regeneration: a refinement animal
model for tissue engineering. Sci Rep. 2016; 6 32168. doi: 10.1038/srep32168.
[8]Kunz, P, Schenker, A, Sähr, H, et al. Optimization of the chicken chorioallantoic membrane assay as reliable in vivo model for the analysis of osteosarcoma. PLoS One.
2019; 14 (4): e0215312. doi: 10.1371/journal.pone.0215312.
[9]Balke, M, Neumann, A, Kersting, C, et al. Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane. BMC Res Notes. 2010; 3 58. doi:
10.1186/1756-0500-3-58.
[10]Kunz, P, Schenker, A, Sähr, H, et al. Optimization of the chicken chorioallantoic membrane assay as reliable in vivo model for the analysis of osteosarcoma. PLoS One.
2019; 14 (4): e0215312. doi: 10.1371/journal.pone.0215312.
[11]Tome, Y, Kimura, H, Sugimoto, N, et al. The disintegrin echistatin in combination with doxorubicin targets high-metastatic human osteosarcoma overexpressing ανβ3
integrin in chick embryo and nude mouse models. Oncotarget. 2016; 7 (52): 87031-87036. doi: 10.18632/oncotarget.13497.
[12]Guder, WK, Hartmann, W, Trautmann, M, et al. Analysis of drug sensitivity of human high-grade osteosarcoma in a chick chorioallantoic membrane (CAM) model: a
proof of principle study. BMC Res Notes. 2020; 13 (1): 432. doi: 10.1186/s13104-020-05269-x.
[13]Salvante, ERG, Popoiu, AV, Barb, AC, et al. Artificial Intelligence (AI) Based Analysis of In Vivo Polymers and Collagen Scaffolds Inducing Vascularization. IN VIVO.
2023; 38 (2): 620-629. doi: 10.21873/invivo.13481.
[14]Xu, F, Yin, J, Zeng, S. Practice of prescription review mode based on data mining in hospital. ANN TRANSL MED. 2020; 8 (14): 885. doi: 10.21037/atm-20-3933.
[15]Zhang, S, Caldwell, JM, Rochman, M, et al. Machine Learning Based Identification and Characterization of Mast cells in Eosinophilic Esophagitis. bioRxiv. 2023; doi:
10.1101/2023.10.25.563471
[16]Robertson, N, Schook, LB, Schachtschneider, KM. Porcine cancer models: potential tools to enhance cancer drug trials. EXPERT OPIN DRUG DIS. 2020; 15 (8): 893-
902. doi: 10.1080/17460441.2020.1757644.
[17]Tanihara, F, Hirata, M, Nguyen, NT, et al. Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via
electroporation. PLoS One. 2018; 13 (10): e0206360. doi: 10.1371/journal.pone.0206360.
[18]Sieren, JC, Meyerholz, DK, Wang, XJ, et al. Development and translational imaging of a TP53 porcine tumorigenesis model. J CLIN INVEST. 2014; 124 (9): 4052-66.
doi: 10.1172/JCI75447.
[19]Saalfrank, A, Janssen, KP, Ravon, M, et al. A porcine model of osteosarcoma. Oncogenesis. 2016; 5 e210. doi: 10.1038/oncsis.2016.19.
[20] 徐京瑶, 刘晓民, 张新峰, 等. 基于MRI 增强的乳腺癌肿瘤三维体积人工智能测量技术的研究进展[J].磁共振成像,2023,14(09):148-153.
[21]Wang, J, Zhang, X, Cheng, L, et al. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. RNA BIOL. 2020; 17 (1): 13-22. doi:
10.1080/15476286.2019.1669406.
[22]Obrezanova, O. Artificial intelligence for compound pharmacokinetics prediction. CURR OPIN STRUC BIOL. 2023; 79 102546. doi: 10.1016/j.sbi.2023.102546.
[23]Withrow, SJ, Wilkins, RM. Cross talk from pets to people: translational osteosarcoma treatments. ILAR J. 2010; 51 (3): 208-13. doi: 10.1093/ilar.51.3.208.
[24]Sakthikumar, S, Elvers, I, Kim, J, et al. SETD2 Is Recurrently Mutated in Whole-Exome Sequenced Canine Osteosarcoma. CANCER RES. 2018; 78 (13): 3421-3431.
doi: 10.1158/0008-5472.CAN-17-3558.
[25]Karuppaiah, K, Yu, K, Lim, J, et al. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth.
DEVELOPMENT. 2016; 143 (10): 1811-22. doi: 10.1242/dev.131722.
[26]London, CA, Bernabe, LF, Barnard, S, et al. Preclinical evaluation of the novel, orally bioavailable Selective Inhibitor of Nuclear Export (SINE) KPT-335 in spontaneous
canine cancer: results of a phase I study. PLoS One. 2014; 9 (2): e87585. doi: 10.1371/journal.pone.0087585.
[27]Yang, Y, Yuzbasiyan-Gurkan, V. Abstract 4032: Synergistic effects of Bortezomib and JQ1 for human and canine osteosarcoma treatments CANCER RES. 2017; 77 (13_
Supple): 4032-4032. doi: 10.1158/1538-7445.am2017-4032.
[28]Ilyinskaya, GV, Mukhina, EV, Soboleva, AV, et al. Oncolytic Sendai Virus Therapy of Canine Mast Cell Tumors (A Pilot Study). Front Vet Sci. 2018; 5 116. doi: 10.3389/
fvets.2018.00116.
[29]Talwar, V, Chufal, K, Joga, S. Artificial Intelligence: A New Tool in Oncologist's Armamentarium INDIAN J MED PAEDIAT. 2021; 42 (06): 511-517. doi: 10.1055/
s-0041-1735577.
[30]Li, W, Wang, Q, Lu, J, et al. Machine learning-based prognostic modeling of lysosome-related genes for predicting prognosis and immune status of patients with
hepatocellular carcinoma. Front Immunol. 2023; 14 1169256. doi: 10.3389/fimmu.2023.1169256.
[31]Korving, H, Zhou, D, Xiang, H, et al. Development of an AI-Enabled System for Pain Monitoring Using Skin Conductance Sensoring in Socks. INT J NEURAL SYST.
2022; 32 (10): 2250047. doi: 10.1142/S0129065722500472.